skip to main content


Search for: All records

Creators/Authors contains: "Bustamante, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acidN-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds.

     
    more » « less
  3. Abstract

    Winter wheat (Triticum aestivumL.) is essential to maintain food security for a large proportion of the world’s population. With increased risk from abiotic stresses due to climate variability, it is imperative to understand and minimize the negative impact of these stressors, including high night temperature (HNT). Both globally and at regional scales, a differential rate of increase in day and night temperature is observed, wherein night temperatures are increasing at a higher pace and the trend is projected to continue into the future. Previous studies using controlled environment facilities and small field-based removable chambers have shown that post-anthesis HNT stress can induce a significant reduction in wheat grain yield. A prototype was previously developed by utilizing field-based tents allowing for simultaneous phenotyping of popular winter wheat varieties from US Midwest and advanced breeding lines. Hence, the objectives of the study were to (i) design and build a new field-based infrastructure and test and validate the uniformity of HNT stress application on a scaled-up version of the prototype (ii) improve and develop a more sophisticated cyber-physical system to sense and impose post-anthesis HNT stress uniformly through physiological maturity within the scaled-up tents; and (iii) determine the impact of HNT stress during grain filling on the agronomic and grain quality parameters including starch and protein concentration. The system imposed a consistent post-anthesis HNT stress of + 3.8 °C until maturity and maintained uniform distribution of stress which was confirmed by (i) 0.23 °C temperature differential between an array of sensors within the tents and (ii) statistically similar performance of a common check replicated multiple times in each tent. On average, a reduction in grain-filling duration by 3.33 days, kernel weight by 1.25% per °C, grain number by 2.36% per °C and yield by 3.58% per °C increase in night temperature was documented. HNT stress induced a significant reduction in starch concentration indicating disturbed carbon balance. The pilot field-based facility integrated with a robust cyber-physical system provides a timely breakthrough for evaluating HNT stress impact on large diversity panels to enhance HNT stress tolerance across field crops. The flexibility of the cyber-physical system and movement capabilities of the field-based infrastructure allows this methodology to be adaptable to different crops.

     
    more » « less
  4. Abstract

    Hibernation in sciurid rodents is a dynamic phenotype timed by a circannual clock. When housed in an animal facility, 13-lined ground squirrels exhibit variation in seasonal onset of hibernation, which is not explained by environmental or biological factors. We hypothesized that genetic factors instead drive variation in timing. After increasing genome contiguity, here, we employ a genotype-by-sequencing approach to characterize genetic variation in 153 ground squirrels. Combined with datalogger records (n = 72), we estimate high heritability (61–100%) for hibernation onset. Applying a genome-wide scan with 46,996 variants, we identify 2 loci significantly (p < 7.14 × 10−6), and 12 loci suggestively (p < 2.13 × 10−4), associated with onset. At the most significant locus, whole-genome resequencing reveals a putative causal variant in the promoter ofFAM204A. Expression quantitative trait loci (eQTL) analyses further reveal gene associations for 8/14 loci. Our results highlight the power of applying genetic mapping to hibernation and present new insight into genetics driving its onset.

     
    more » « less
  5. Abstract

    Indigenous peoples have occupied the island of Puerto Rico since at least 3000 BC. Due to the demographic shifts that occurred after European contact, the origin(s) of these ancient populations, and their genetic relationship to present-day islanders, are unclear. We use ancient DNA to characterize the population history and genetic legacies of precontact Indigenous communities from Puerto Rico. Bone, tooth, and dental calculus samples were collected from 124 individuals from three precontact archaeological sites: Tibes, Punta Candelero, and Paso del Indio. Despite poor DNA preservation, we used target enrichment and high-throughput sequencing to obtain complete mitochondrial genomes (mtDNA) from 45 individuals and autosomal genotypes from two individuals. We found a high proportion of Native American mtDNA haplogroups A2 and C1 in the precontact Puerto Rico sample (40% and 44%, respectively). This distribution, as well as the haplotypes represented, supports a primarily Amazonian South American origin for these populations and mirrors the Native American mtDNA diversity patterns found in present-day islanders. Three mtDNA haplotypes from precontact Puerto Rico persist among Puerto Ricans and other Caribbean islanders, indicating that present-day populations are reservoirs of precontact mtDNA diversity. Lastly, we find similarity in autosomal ancestry patterns between precontact individuals from Puerto Rico and the Bahamas, suggesting a shared component of Indigenous Caribbean ancestry with close affinity to South American populations. Our findings contribute to a more complete reconstruction of precontact Caribbean population history and explore the role of Indigenous peoples in shaping the biocultural diversity of present-day Puerto Ricans and other Caribbean islanders.

     
    more » « less